Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 15(1): 25, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866184

RESUMO

BACKGROUND: Animal models remain at that time a reference tool to predict potential pulmonary adverse effects of nanomaterials in humans. However, in a context of reduction of the number of animals used in experimentation, there is a need for reliable alternatives. In vitro models using lung cells represent relevant alternatives to assess potential nanomaterial acute toxicity by inhalation, particularly since advanced in vitro methods and models have been developed. Nevertheless, the ability of in vitro experiments to replace animal experimentation for predicting potential acute pulmonary toxicity in human still needs to be carefully assessed. The aim of the study was to evaluate the differences existing between the in vivo and the in vitro approaches for the prediction of nanomaterial toxicity and to find advanced methods to enhance in vitro predictivity. For this purpose, rats or pneumocytes in co-culture with macrophages were exposed to the same poorly soluble and poorly toxic TiO2 and CeO2 nanomaterials, by the respiratory route in vivo or using more or less advanced methodologies in vitro. After 24 h of exposure, biological responses were assessed focusing on pro-inflammatory effects and quantitative comparisons were performed between the in vivo and in vitro methods, using compatible dose metrics. RESULTS: For each dose metric used (mass/alveolar surface or mass/macrophage), we observed that the most realistic in vitro exposure method, the air-liquid interface method, was the most predictive of in vivo effects regarding biological activation levels. We also noted less differences between in vivo and in vitro results when doses were normalized by the number of macrophages rather than by the alveolar surface. Lastly, although we observed similarities in the nanomaterial ranking using in vivo and in vitro approaches, the quality of the data-set was insufficient to provide clear ranking comparisons. CONCLUSIONS: We showed that advanced methods could be used to enhance in vitro experiments ability to predict potential acute pulmonary toxicity in vivo. Moreover, we showed that the timing of the dose delivery could be controlled to enhance the predictivity. Further studies should be necessary to assess if air-liquid interface provide more reliable ranking of nanomaterials than submerged methods.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Cério/toxicidade , Exposição por Inalação/efeitos adversos , Macrófagos/efeitos dos fármacos , Nanoestruturas/toxicidade , Titânio/toxicidade , Células A549 , Células Epiteliais Alveolares/imunologia , Alternativas ao Uso de Animais , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Cério/química , Cério/farmacocinética , Técnicas de Cocultura , Citocinas/imunologia , Relação Dose-Resposta a Droga , Humanos , Macrófagos/imunologia , Masculino , Nanoestruturas/química , Tamanho da Partícula , Valor Preditivo dos Testes , Ratos Wistar , Espécies Reativas de Oxigênio/imunologia , Titânio/química , Titânio/farmacocinética
2.
PLoS One ; 10(4): e0124490, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909957

RESUMO

Titanium dioxide (TiO2) nanoparticles are used in many applications. Due to their small size, easy body penetration and toxicological adverse effects have been suspected. Numerous studies have tried to characterize TiO2 translocation after oral, dermal or respiratory exposure. In this study, we focused on TiO2 nanoparticle biodistribution, clearance and toxicological effects after intravenous injection, considering TiO2 translocation in the blood occurs. Using ICP-OES, transmission electron microscopy, and histological methods, we found TiO2 accumulation in liver, lungs and spleen. We estimated TiO2 nanoparticles' half life in the body to about 10 days. Clinical biomarkers were also quantified for 56 days to identify potential toxicological impact on lungs, blood, liver, spleen and kidneys. Results showed absence of toxicological effects after TiO2 intravenous injection at concentrations of 7.7 to 9.4 mg/kg.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Titânio/administração & dosagem , Titânio/farmacocinética , Animais , Microanálise por Sonda Eletrônica , Meia-Vida , Injeções Intravenosas , Masculino , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Titânio/toxicidade
4.
Nanotoxicology ; 7(8): 1302-14, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23020093

RESUMO

Macrophages and alveolar epithelial cells are the first targets of inhaled nanoparticles (NPs) reaching the alveoli. Mono- or co-cultures of lung epithelial (A549 or NCI-H441) and macrophage (THP-1) cell lines were used to study the cell cooperation and the involvement of the P2X7 cell death receptor during the inflammation caused by SiO2 and TiO2 NPs. Here we show that, secretion of pro-inflammatory cytokines (IL-1ß, IL-6 and IL-8) in response to NPs exposure was higher in co-cultures than in mono-cultures. A functional P2X7 receptor was found in all the cell lines studied. Its involvement in IL-1ß secretion in co-cultures was demonstrated using a specific antagonist, the brilliant blue G. Furthermore, mono and co-cultures exhibited distinct secretion patterns of pro-inflammatory cytokines in response to NPs exposure, and we provide the first evidence that the P2X7 receptor is involved in the inflammation triggered by SiO2 and TiO2 NPs, by increasing IL-1ß secretion, and likely through the inflammasome pathway. Altogether, our data indicate that cell co-cultures used in this study represent valid models to study the inflammatory mechanisms of NPs within the alveoli.


Assuntos
Células Epiteliais/metabolismo , Macrófagos/metabolismo , Nanopartículas Metálicas/toxicidade , Receptores Purinérgicos P2X7/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Células Epiteliais/efeitos dos fármacos , Humanos , Inflamassomos , Inflamação , Interleucinas/análise , Interleucinas/metabolismo , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/química , Titânio/química , Titânio/farmacocinética , Titânio/toxicidade
5.
PLoS One ; 7(9): e45687, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029182

RESUMO

The interaction of particulate and gaseous pollutants in their effects on the severity of allergic inflammation and airway responsiveness are not well understood. We assessed the effect of exposure to NO(2) in the presence or absence of repetitive treatment with carbon nanoparticle (CNP) during allergen sensitization and challenges in Brown-Norway (BN) rat, in order to assess their interactions on lung function and airway responses (AR) to allergen and methacholine (MCH), end-expiratory lung volume (EELV), bronchoalveolar lavage fluid (BALF) cellular content, serum and BALF cytokine levels and histological changes. Animals were divided into the following groups (n = 6): Control; CNP (Degussa-FW2): 13 nm, 0.5 mg/kg instilled intratracheally ×3 at 7-day intervals; OVA: ovalbumin-sensitised; OVA+CNP: both sensitized and exposed to CNP. Rats were divided into equal groups exposed either to air or to NO(2), 10 ppm, 6 h/d, 5d/wk for 4 weeks. Exposure to NO(2), significantly enhanced lung inflammation and airway reactivity, with a significantly larger effect in animals sensitized to allergen, which was related to a higher expression of TH1 and TH2-type cytokines. Conversely, exposure to NO(2) in animals undergoing repeated tracheal instillation of CNP alone, increased BALF neutrophilia and enhanced the expression of TH1 cytokines: TNF-α and IFN-γ, but did not show an additive effect on airway reactivity in comparison to NO(2) alone. The exposure to NO(2) combined with CNP treatment and allergen sensitization however, unexpectedly resulted in a significant decrease in both airway reactivity to allergen and to methacholine, and a reduction in TH2-type cytokines compared to allergen sensitization alone. EELV was significantly reduced with sensitization, CNP treatment or both. These data suggest an immunomodulatory effect of repeated tracheal instillation of CNP on the proinflammatory effects of NO(2) exposure in sensitized BN rat. Furthermore, our findings suggest that NO(2), CNP and OVA sensitization may significantly slow overall lung growth in parenchymally mature animals.


Assuntos
Carbono/química , Pulmão/efeitos dos fármacos , Nanopartículas , Dióxido de Nitrogênio/farmacologia , Ovalbumina/farmacologia , Animais , Citocinas/metabolismo , Imunoglobulina E/metabolismo , Pulmão/metabolismo , Pulmão/fisiologia , Ratos , Testes de Função Respiratória , Linfócitos T Auxiliares-Indutores/imunologia , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/fisiologia
6.
BMC Pulm Med ; 12: 38, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22849372

RESUMO

BACKGROUND: Titanium dioxide (TiO2) and carbon black (CB) nanoparticles (NPs) have biological effects that could aggravate pulmonary emphysema. The aim of this study was to evaluate whether pulmonary administration of TiO2 or CB NPs in rats could induce and/or aggravate elastase-induced emphysema, and to investigate the underlying molecular mechanisms. METHODS: On day 1, Sprague-Dawley rats were intratracheally instilled with 25 U kg⁻¹ pancreatic porcine elastase or saline. On day 7, they received an intratracheal instillation of TiO2 or CB (at 100 and 500 µg) dispersed in bovine serum albumin or bovine serum albumin alone. Animals were sacrificed at days 8 or 21, and bronchoalveolar lavage (BAL) cellularity, histological analysis of inflammation and emphysema, and lung mRNA expression of heme oxygenase-1 (HO-1), interleukin-1ß (IL-1ß), macrophage inflammatory protein-2, monocyte chemotactic protein-1, and matrix metalloprotease (MMP)-1, and -12 were measured. In addition, pulmonary MMP-12 expression was also analyzed at the protein level by immunohistochemistry. RESULTS: TiO2 NPs per se did not modify the parameters investigated, but CB NPs increased perivascular/peribronchial infiltration, and macrophage MMP-12 expression, without inducing emphysema. Elastase administration increased BAL cellularity, histological inflammation, HO-1, IL-1ß and macrophage MMP-12 expression and induced emphysema. Exposure to TiO2 NPs did not modify pulmonary responses to elastase, but exposure to CB NPs aggravated elastase-induced histological inflammation without aggravating emphysema. CONCLUSIONS: TiO2 and CB NPs did not aggravate elastase-induced emphysema. However, CB NPs induced histological inflammation and MMP-12 mRNA and protein expression in macrophages.


Assuntos
Nanopartículas/efeitos adversos , Elastase Pancreática/efeitos adversos , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/patologia , Fuligem/efeitos adversos , Titânio/efeitos adversos , Animais , Lavagem Broncoalveolar , Heme Oxigenase-1/metabolismo , Interleucina-1beta/metabolismo , Intubação Intratraqueal , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Modelos Animais , Nanopartículas/administração & dosagem , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Enfisema Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Fuligem/administração & dosagem , Titânio/administração & dosagem
7.
Int Arch Allergy Immunol ; 154(2): 128-36, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20733321

RESUMO

BACKGROUND: Grass pollen is one of the most important aeroallergens in Europe. It highly contributes to respiratory allergic diseases, mainly allergic rhinitis. In contact to water or airborne pollutants, pollen grains can release pollen cytoplasmic granules (PCGs) containing allergens. Because of their size (<5 µm), PCGs may penetrate deeper into the lungs to induce higher allergic responses, such as asthma. They have been associated with thunderstorm-related asthma. The aim of this study was to evaluate, with Brown Norway rats, the allergenic potential of isolated PCGs and to compare it with the allergenicity of whole timothy grass pollen. METHODS: Rats were sensitized (day 0) and challenged (day 21), in controlled comparative conditions, with pollen grains (0.5 mg) or PCGs (4.5 × 107 and 0.5 mg). At day 25, blood samples, bronchoalveolar lavage fluid (BALF) and bronchial lymph node were collected. IgE and IgG1 levels in sera were assessed by ELISA. Alveolar cells, protein and cytokine concentrations were quantified in BALF. T cell proliferation, in response to pollen or granules, was performed by lymph node assay. RESULTS: The results showed that proliferative responses of lymph node cells were similar in PCG- and pollen-sensitized rats. IgE and IgG1 levels were higher in pollen- than in PCG-sensitized rats. However, eosinophils, lymphocytes and pro-allergy cytokines in BALF were higher in PCG- than in pollen-sensitized rats. CONCLUSIONS: Thus, PCGs, able to deeply penetrate in the respiratory tract, induced local and strong allergic and inflammatory responses more linked with asthma- than rhinitis-related allergic symptoms.


Assuntos
Grânulos Citoplasmáticos/imunologia , Pólen/imunologia , Hipersensibilidade Respiratória/imunologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Distribuição Aleatória , Ratos , Estatísticas não Paramétricas
8.
Toxicol Appl Pharmacol ; 245(2): 203-10, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20214918

RESUMO

Pulmonary circulation could be one of the primary vascular targets of finest particles that can deeply penetrate into the lungs after inhalation. We investigated the effects of engineered nanoparticles on vasomotor responses of small intrapulmonary arteries using isometric tension measurements. Acute in vitro exposure to carbon nanoparticles (CNP) decreased, and in some case abolished, the vasomotor responses induced by several vasoactive agents, whereas acute exposure to titanium dioxide nanoparticles (TiO(2)NP) did not. This could be attributed to a decrease in the activity of those vasoactive agents (including PGF(2)(alpha), serotonin, endothelin-1 and acetylcholine), as suggested when they were exposed to CNP before being applied to arteries. Also, CNP decreased the contraction induced by 30 mM KCl, without decreasing its activity. After endoplasmic reticulum calcium stores depletion (by caffeine and thapsigargin), CaCl(2) addition induced a contraction, dependent on Store-Operated Calcium Channels that was not modified by acute CNP exposure. Further addition of 30 mM KCl elicited a contraction, originating from activation of Voltage-Operated Calcium Channels that was diminished by CNP. Contractile responses to PGF(2)(alpha) or KCl, and relaxation to acetylcholine were modified neither in pulmonary arteries exposed in vitro for prolonged time to CNP or TiO(2)NP, nor in those removed from rats intratracheally instilled with CNP or TiO(2)NP. In conclusion, prolonged in vitro or in vivo exposure to CNP or TiO(2)NP does not affect vasomotor responses of pulmonary arteries. However, acute exposure to CNP decreases contraction mediated by activation of Voltage-Operated, but not Store-Operated, Calcium Channels. Moreover, interaction of some vasoactive agents with CNP decreases their biological activity that might lead to misinterpretation of experimental data.


Assuntos
Carbono/farmacologia , Contração Isométrica/efeitos dos fármacos , Nanopartículas , Artéria Pulmonar/efeitos dos fármacos , Titânio/farmacologia , Animais , Canais de Cálcio/fisiologia , Relação Dose-Resposta a Droga , Retículo Endoplasmático/metabolismo , Exposição por Inalação/efeitos adversos , Masculino , Artéria Pulmonar/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
9.
Part Fibre Toxicol ; 6: 14, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19405955

RESUMO

BACKGROUND: A critical issue with nanomaterials is the clear understanding of their potential toxicity. We evaluated the toxic effect of 24 nanoparticles of similar equivalent spherical diameter and various elemental compositions on 2 human pulmonary cell lines: A549 and THP-1. A secondary aim was to elaborate a generic experimental set-up that would allow the rapid screening of cytotoxic effect of nanoparticles. We therefore compared 2 cytotoxicity assays (MTT and Neutral Red) and analyzed 2 time points (3 and 24 hours) for each cell type and nanoparticle. When possible, TC50 (Toxic Concentration 50 i.e. nanoparticle concentration inducing 50% cell mortality) was calculated. RESULTS: The use of MTT assay on THP-1 cells exposed for 24 hours appears to be the most sensitive experimental design to assess the cytotoxic effect of one nanoparticle. With this experimental set-up, Copper- and Zinc-based nanoparticles appear to be the most toxic. Titania, Alumina, Ceria and Zirconia-based nanoparticles show moderate toxicity, and no toxicity was observed for Tungsten Carbide. No correlation between cytotoxicity and equivalent spherical diameter or specific surface area was found. CONCLUSION: Our study clearly highlights the difference of sensitivity between cell types and cytotoxicity assays that has to be carefully taken into account when assessing nanoparticles toxicity.

10.
World Allergy Organ J ; 2(9): 201-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23283149

RESUMO

BACKGROUND: : Grass pollen is one of the most important aeroallergen vectors in Europe. Under some meteorological factors, pollen grains can release pollen cytoplasmic granules (PCGs). PCGs induce allergic responses. Several studies have shown that during a period of thunderstorms the number of patients with asthma increases because of higher airborne concentrations of PCGs. OBJECTIVE: : The aims of the study were to assess the allergenicity of interactive effects between pollen and PCGs and to compare it with allergenicity of Timothy grass pollen and PCGs in Brown Norway rats. METHODS: : Rats were sensitized (day 0) and challenged (day 21) with pollen grains and/or PCGs. Four groups were studied: pollen-pollen (PP), PCGs-PCGs (GG), pollen-PCGs (PG), and PCGs-pollen (GP). Blood samples, bronchoalveolar lavage fluid, and bronchial lymph node were collected at day 25. IgE and IgG1 levels in sera were assessed by enzyme-linked immunosorbent assay. Alveolar cells, protein, and cytokine concentrations were quantified in bronchoalveolar lavage fluid. T-cell proliferation, in response to pollen or granules, was performed by lymph node assay. RESULTS: : Interactive effects between pollen and PCGs increased IgE and IgG1 levels when compared with those of the negative control. These increases were lower than those of the PP group but similar to the levels obtained by the GG group. Whatever was used in the sensitization and/or challenge phase, PCGs increased lymphocyte and Rantes levels compared with those of the pollen group. The interactive effects increased IL-1α and IL-1ß compared with those of the PP and GG groups. CONCLUSIONS: : Immunologic interactive effects have been shown between pollen and PCGs. For humoral and cellular allergic responses, interactive effects between the 2 aeroallergenic sources used in this study seem to be influenced mainly by PCGs.

11.
Part Fibre Toxicol ; 5: 20, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19068117

RESUMO

BACKGROUND: Constituted only by carbon atoms, CNT are hydrophobic and hardly detectable in biological tissues. These properties make biokinetics and toxicology studies more complex. METHODS: We propose here a method to investigate the biopersistence of CNT in organism, based on detection of nickel, a metal present in the MWCNT we investigated. RESULTS AND CONCLUSION: Our results in rats that received MWCNT by intratracheal instillation, reveal that MWCNT can be eliminated and do not significantly cross the pulmonary barrier but are still present in lungs 6 months after a unique instillation. MWCNT structure was also showed to be chemically modified and cleaved in the lung. These results provide the first data of CNT biopersistence and clearance at 6 months after respiratory administration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...